python下载
python文档
python异常
python规范

0. 命名规范

Type Public Internal
Modules模块 lower_with_under _lower_with_under
Packages包 lower_with_under
Classes类 CapWords _CapWords
Exceptions异常 CapWords
Functions函数 lower_with_under() _lower_with_under()
Global/Class Constants全局/类常量 CAPS_WITH_UNDER _CAPS_WITH_UNDER
Global/Class Variables全局/类变量 lower_with_under _lower_with_under
Instance Variables实例变量 lower_with_under _lower_with_under (protected) or __lower_with_under (private)
Method Names方法 lower_with_under() _lower_with_under() (protected) or __lower_with_under() (private)
Function/Method Parameters参数 lower_with_under
Local Variables本地变量 lower_with_under

1. 直接运行py文件

.py文件的第一行加上:

1
#!/usr/bin/env python

再执行

1
$ chmod a+x hello.py

然后就可以直接运行./hello.py

2. 按UTF-8编码读取

在文件开头添加

1
# -*- coding: utf-8 -*-

3. 占位符

其中,格式化整数和浮点数还可以指定是否补0和整数与小数的位数:

1
2
3
4
>>> '%2d-%02d' % (3, 1)
' 3-01'
>>> '%.2f' % 3.1415926
'3.14'

如果你不太确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串:

1
2
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'

对于Unicode字符串,用法完全一样,但最好确保替换的字符串也是Unicode字符串:

1
2
>>> u'Hi, %s' % u'Michael'
u'Hi, Michael'

有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:

1
2
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'

4. tuple定义

1
2
3
>>> t = (1)
>>> t
1

括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。

所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:

1
2
3
>>> t = (1,)
>>> t
(1,)

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

“可变的”tuple:

1
2
3
4
5
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][10] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向’a’,就不能改成指向’b’,指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的。

5. pass

如果想定义一个什么事也不做的空函数,可以用pass语句:

1
2
def nop():
pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

1
2
if age >= 18:
pass

缺少了pass,代码运行就会有语法错误。

6. 函数返回值是个tuple

1
2
3
4
5
6
import math

def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny

这样我们就可以同时获得返回值:

1
2
3
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0

但其实这只是一种假象,Python函数返回的仍然是单一值

1
2
3
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)

原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

7. 关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

1
2
def person(name, age, **kw):
print 'name:', name, 'age:', age, 'other:', kw

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数

1
2
>>> person('Michael', 30)
name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

1
2
3
4
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

1
2
3
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=kw['city'], job=kw['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

1
2
3
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **kw)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

8. 尾递归

在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

解决递归调用栈溢出的方法是通过尾递归优化,尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

1
2
3
4
5
6
7
def fact(n):
return fact_iter(n, 1)

def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(5, 1)的调用如下:

1
2
3
4
5
6
===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

9. 特性

1. 切片

1
2
3
>>> L = range(100)
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

1
2
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

1
2
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

1
2
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

1
2
>>> L[:10:2]
[0, 2, 4, 6, 8]

2. 迭代

Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

只要是可迭代对象,无论有无下标,都可以迭代

dict迭代:

1
2
3
4
5
6
7
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print key
...
a
c
b

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.itervalues(),如果要同时迭代key和value,可以用for k, v in d.iteritems()

由于字符串也是可迭代对象,因此,也可以作用于for循环:

1
2
3
4
5
6
>>> for ch in 'ABC':
... print ch
...
A
B
C

判断一个对象是可迭代对象的方法是通过collections模块的Iterable类型判断:

1
2
3
4
5
6
7
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

1
2
3
4
5
6
>>> for i, value in enumerate(['A', 'B', 'C']):
... print i, value
...
0 A
1 B
2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

1
2
3
4
5
6
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print x, y
...
1 1
2 4
3 9

3. 列表生成式

要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用range(1, 11):

1
2
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

如果要生成[1x1, 2x2, 3x3, …, 10x10]?方法一是循环:

1
2
3
4
5
6
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

列表生成式则可以用一行语句代替循环生成上面的list:

1
2
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

还可以使用两层循环,可以生成全排列:

1
2
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

列出当前目录下的所有文件和目录名
1
2
>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录

4. 生成器

一边循环一边计算的机制,称为生成器(Generator)
可以从第一个元素开始,推算出后续任意的元素

只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> L = [x * x for x in range(10)]   #list
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>
>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g = (x * x for x in range(10))
>>> for n in g:
... print n

斐波那契数列
1
2
3
4
5
6
7
8
9
10
11
12
13
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
>>> fib(6)
1
1
2
3
5
8

要把fib函数变成generator,只需要把print b改为yield b就可以了:

1
2
3
4
5
6
7
8
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
>>> fib(6)
<generator object fib at 0x104feaaa0>

函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> def odd():
... print 'step 1'
... yield 1
... print 'step 2'
... yield 3
... print 'step 3'
... yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()

5. map&reduce&filter&sorted

1
2
>>> map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])
['1', '2', '3', '4', '5', '6', '7', '8', '9']

reduce把一个函数作用在一个序列[x1, x2, x3…]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算

1
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

1
2
3
4
5
def not_empty(s):
return s and s.strip()

filter(not_empty, ['A', '', 'B', None, 'C', ' '])
# 结果: ['A', 'B', 'C']

sorted()函数也是一个高阶函数,它还可以接收一个比较函数来实现自定义的排序。比如,如果要倒序排序,我们就可以自定义一个reversed_cmp函数:

1
2
3
4
5
6
def reversed_cmp(x, y):
if x > y:
return -1
if x < y:
return 1
return 0

传入自定义的比较函数reversed_cmp,就可以实现倒序排序:

1
2
>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]

6. lambda

1
2
>>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

通过对比可以看出,匿名函数lambda x: x * x实际上就是:

1
2
def f(x):
return x * x

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

7. 装饰器

定义一个能打印日志的decorator:

1
2
3
4
5
def log(func):
def wrapper(*args, **kw):
print 'call %s():' % func.__name__
return func(*args, **kw)
return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

1
2
3
@log
def now():
print '2013-12-25'

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

1
2
3
>>> now()
call now():
2013-12-25

把@log放到now()函数的定义处,相当于执行了语句:

1
now = log(now)

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

1
2
3
4
5
6
7
8
9
10
11
12
13
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print '%s %s():' % (text, func.__name__)
return func(*args, **kw)
return wrapper
return decorator



@log('execute')
def now():
print '2013-12-25'

执行结果如下:

1
2
3
>>> now()
execute now():
2013-12-25

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

1
>>> now = log('execute')(now)

1
2
>>> now.__name__
'wrapper'

因为返回的那个wrapper()函数名字就是’wrapper’,所以,需要把原始函数的name等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

1
2
3
4
5
6
7
8
9
10
import functools

def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print '%s %s():' % (text, func.__name__)
return func(*args, **kw)
return wrapper
return decorator

8. 偏函数

int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

1
2
3
4
5
6
>>> int('12345')
12345
>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565

定义一个int2()的函数,默认把base=2传进去:

1
2
3
4
5
6
7
def int2(x, base=2):
return int(x, base)

>>> int2('1000000')
64
>>> int2('1010101')
85

functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

1
2
3
4
5
6
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:

1
2
>>> int2('1000000', base=10)
1000000

最后,创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数,当传入:

1
int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

1
2
kw = { base: 2 }
int('10010', **kw)

当传入:

1
max2 = functools.partial(max, 10)

实际上会把10作为*args的一部分自动加到左边,也就是:

1
max2(5, 6, 7)

相当于:

1
2
args = (10, 5, 6, 7)
max(*args)

结果为10。

10. 错误&调试

Exception hierarchy错误等级关系

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
try:
print 'try...'
# r = 10 / int('a')
r = 10 / 0
print 'result:', r
except ValueError, e:
print 'ValueError:', e
except ZeroDivisionError, e:
print 'except:', e
finally:
print 'finally...'
print 'END'

############
# try...
# except: integer division or modulo by zero
# finally...
# END

Python的错误其实也是class,所有的错误类型都继承自BaseException

捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。

raise语句如果不带参数,就会把当前错误原样抛出。此外,在except中raise一个Error,还可以把一种类型的错误转化成另一种类型:

1
2
3
4
try:
10 / 0
except ZeroDivisionError:
raise ValueError('input error!')

断言

1
2
3
4
5
6
7
8
# err.py
def foo(s):
n = int(s)
assert n != 0, 'n is zero!'
return 10 / n

def main():
foo('0')

assert的意思是,表达式n != 0应该是True,否则,后面的代码就会出错。

如果断言失败,assert语句本身就会抛出AssertionError:

1
2
3
4
$ python err.py
Traceback (most recent call last):
...
AssertionError: n is zero!

启动Python解释器时可以用-O参数来关闭assert, 关闭后所有assert语句可当做pass。

logging

和assert比,logging不会抛出错误,而且可以输出到文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# err.py
import logging
logging.basicConfig(level=logging.INFO)

s = '0'
n = int(s)
logging.info('n = %d' % n)
print 10 / n

###################
# $ python err.py
# INFO:root:n = 0
# Traceback (most recent call last):
# File "err.py", line 8, in <module>
# print 10 / n
# ZeroDivisionError: integer division or modulo by zero

logging的好处是它允许你指定记录信息的级别,有debuginfowarningerror等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debug和info就不起作用了。
可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。

logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。

调试器pdb

1
2
3
4
# err.py
s = '0'
n = int(s)
print 10 / n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
$ python -m pdb err.py
> /Users/michael/Github/sicp/err.py(2)<module>()
-> s = '0'

################
# 输入命令 l 来查看代码

(Pdb) l
1 # err.py
2 -> s = '0'
3 n = int(s)
4 print 10 / n
[EOF]

################
# 输入命令n可以单步执行代码:
(Pdb) n
> /Users/michael/Github/sicp/err.py(3)<module>()
-> n = int(s)
(Pdb) n
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n

################
# 任何时候都可以输入命令p 变量名来查看变量:

(Pdb) p s
'0'
(Pdb) p n
0

################
# 输入命令q结束调试,退出程序:

(Pdb) n
ZeroDivisionError: 'integer division or modulo by zero'
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n
(Pdb) q

pdb.set_trace()

这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点。运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行。

1
2
3
4
5
6
import pdb

s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print 10 / n
1
2
3
4
5
6
7
8
9
10
$ python err.py
> /Users/michael/Github/sicp/err.py(7)<module>()
-> print 10 / n
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
File "err.py", line 7, in <module>
print 10 / n
ZeroDivisionError: integer division or modulo by zero

https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000